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Chemical Looping Combustion

“DOE/NETL Advanced Combustion Systems: Chemical Looping Summary,” July 2013, DOE/NETL

Optimization of process requires ability to identify oxidation state

Goal: Combust fossil fuels in pure O2 so 
as to generate pure CO2 for storage.

Conditions, including:
• Temperatures:  800 °C – 1000 °C
• Pressure:  ~ 10 atm
• Particles constantly moving

Depleted Air Combustion Products
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Oxygen Carrier Particles

This Project:
• Fe2O3/Fe3O4
• CaSO4
• CuO

J. C. Fisher II, “Oxy(gen) combustion and Chemical Looping Combustion,” DOE/NETL

Desired properties include:
• High conversion efficiency
• High reactivity
• Low agglomeration
• Long lifetime
• Low cost
• Low environmental impact

https://www.netl.doe.gov/newsroom/labnotes/labnotes-archive/01-2014, accessed 9/26/16



Goal, Objectives, and Vision

Goal:  
Develop a sensor for the on-line analysis of the oxidation state of oxygen 
carrier particles and demonstrate its feasibility. 

Objectives: 
(1) Set up and test a Raman spectroscopy system in combination with a 

pressurized high-temperature sample chamber.

(2) Optimize operating parameters of the Raman spectroscopy system 
and measure the high-temperature spectra of oxygen carriers.

(3) Develop an analysis procedure, including statistical modeling and 
multivariate calibration, for the interpretation of the Raman spectra.

Long-term Vision:
Monitoring system that can easily be integrated into different types of 
CLC systems and provide feedback for process control.



https://www.sciaps.com/raman-spectrometers/, accessed 9/30/16

Raman Spectroscopy

• Widely used for the detection/identification of materials.
• Demonstrated for standoff/remote single-shot applications.

Widely used and proven technique.



Raman Spectroscopy
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Corrections for Raman Spectra

Raman spectra require various corrections.

Processing:
• Instrumental transfer function

• Filters
• Spectrometer
• Detector
• Other optical elements

• Background
• Fluorescence
• Blackbody
• Cosmic radiation
• Stray light
• Laser fluctuation

• Multi-peak fitting
• Peak position
• FWHM
• Peak area
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Fitting of Raman Bands

FWHM—thermal 
broadening

Band center—band 
migration due to heating

Integrated– calculate 
temperature from 
Stokes/antiStokes bands

Peak fitting provides important information 
for calibration models.
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x:  Composition (e.g., mol% Fe2O3)
T:  Temperature
αi, βi:  fitting parameters
Ri:  subsets of the Raman parameters (frequency; FWHM; area) 

Raman Analysis

Yields T and x in the form of linear 
combinations of the Raman parameters.

1. Li, H., et al. "Feasibility Study of Using High-Temperature Raman Spectroscopy for On-Line Monitoring and Product Control of the
Glass Vitrification Process," Energy”, PNNL/DOE 1998.

2. Piepel, G. F., et al. “Statistical Modeling of Raman Spectroscopy data from high-temperature glass melts for on-line monitoring of 
temperature and composition.” Quality Engineering 2001, 13,  667-677

• Heat known materials (e.g., Fe2O3, Fe3O4) to high temperature (e.g., 800 
°C, 900 °C, and 1000 °C) and measure Raman spectra.

• Perform Inverse calibration (determine composition  and temperature):



Blackbody Radiation at 1000 °C

Using 355 nm instead of 785 nm reduces 
background by more than 5 orders of magnitude.



Blackbody Radiation - Fe2O3
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Envisioned Raman Spectroscopy Field Setup
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Initial Laboratory Setup 
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Calibration measurements on well-defined samples. 



Investigation of OCPs

• Calcium Sulfate Studies
• Pulsed/time gating approach 

successful for temperatures 
>1000°C

• Iron Oxide Studies
• Pulsed lasers generally not 

successful because of 
instability under intense 
light.

• CW lasers have proved 
promising



CaSO4 – High Temperature Measurements
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Characteristic Raman peaks observed above 1000°C.
J. Kirtley, V. Leichner, B. R. Anderson, H. Eilers, J. Raman Spectrosc. 2018. 

532 nm



CaSO4 – LIBS
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Laser induced breakdown spectra (LIBS) observed 
using laser pulses of sufficient intensity.

J. Kirtley, V. Leichner, B. R. Anderson, H. Eilers, J. Raman Spectrosc. 2018. 
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Fe2O3/Fe3O4 – Challenges with Absorption
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Fe2O3 – Optimizing Light Intensity & Wavelength

360 nm** 532 nm* 633 nm* 785 nm*
Intensity ≤106 W/cm2 ≤105 W/cm2 ≤105 W/cm2 ≤105 W/cm2

Highest
Temperature 1050 °C 700 °C 400 °C 600 °C

*Using hematite powders (212 μm-600 μm)
**Light intensity only estimated, used densely packed powder

Light intensity must be low to avoid LIBS 
(creating an advantage for UV excitation).

Using CW:



Fe2O3 – Comparison of Wavelengths

Shorter wavelengths best for avoiding blackbody.
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Fe2O3 at 1000 °C

Benchmark high temperature spectrum. 
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Raman signatures of powders optimized prior 
to heating mixture sample.



Fe2O3/Fe3O4 Powder Mixture
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Fe2O3/Fe3O4 can be differentiated up to 600°C 
using CW 532 nm. 



Next Steps

• Optimize Collection of Raman Spectra
• Further investigate UV Raman
• Finalize selection of laser wavelength
• Utilize lock-in amplifier with photomultiplier tube to 

minimize spectral noise/background
• Test NETL Samples

• Collect reference spectra prior to heating

CuO-Fe2O3-Al2O



Next Steps

• Perform Multivariate Statistical Analysis
• Collect reference measurements for calibration
• Test chemometric software for our analysis
• Determine relative mole fraction of OCPs at a given temperature

Blue gel inks Red gel inks

Multiple linear regression (MLR) could be a useful 
chemometric technique for our analysis.

PCA Analysis
Example – Gel Ink Pens
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Summary

• CaSO4

• Yields good spectra for both cw and low intensity pulses
• Successfully measured spectra above 1000°C
• LIBS observed with high intensity pulses

• Fe2O3 and Fe3O4

• Shorter wavelengths and low intensity light ideal for avoiding LIBS and 
blackbody radiation

• Benchmark Fe2O3 spectrum at 1000 °C achieved
• Fe2O3 /Fe3O4 Raman spectra collected up to 600 °C

• Publications/Presentations
• John Kirtley, Victoria Leichner, Benjamin Anderson, Hergen Eilers, “A comparison of pulsed and continuous 

lasers for high‐temperature Rama n measurements of anhydrite,” J. Raman Spectrosc. 10.1002/jrs.5356

• John Kirtley, Victoria Leichner, and Hergen Eilers, “Raman spectroscopy of oxygen carrier particles in 
harsh environments,” Invited Presentation, SPIE-DSS, April 16, 2018, Orlando, FL
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Questions?

Thanks to DOE/NETL: FE0027840


